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Abstract
Anthropogenic climate change has resulted in warming temperatures and reduced ox-
ygen concentrations in the global oceans. Much remains unknown on the impacts of 
reduced oxygen concentrations on the biology and distribution of marine fishes. In the 
Southern California Channel Islands, visual fish surveys were conducted frequently in 
a manned submersible at three rocky reefs between 1995 and 2009. This area is char-
acterized by a steep bathymetric gradient, with the surveyed sites Anacapa Passage, 
Footprint and Piggy Bank corresponding to depths near 50, 150 and 300 m. Poisson 
models were developed for each fish species observed consistently in this network of 
rocky reefs to determine the impact of depth and year on fish peak distribution. The 
interaction of depth and year was significant in 23 fish types, with 19 of the modelled 
peak distributions shifting to a shallower depth over the surveyed time period. Across 
the 23 fish types, the peak distribution shoaled at an average rate of 8.7 m of verti-
cal depth per decade. Many of the species included in the study, including California 
sheephead, copper rockfish and blue rockfish, are targeted by commercial and rec-
reational fisheries. CalCOFI hydrographic samples are used to demonstrate significant 
declines in dissolved oxygen at stations near the survey sites which are forced by a 
combination of natural multidecadal oscillations and anthropogenic climate change. 
This study demonstrates in situ fish depth distribution shifts over a 15- year period 
concurrent with oxygen decline. Climate- driven distribution shifts in response to de-
oxygenation have important implications for fisheries management, including habitat 
reduction, habitat compression, novel trophic dynamics and reduced body condition. 
Continued efforts to predict the formation and severity of hypoxic zones and their 
impact on fisheries dynamics will be essential to guiding effective placement of pro-
tected areas and fisheries regulations.
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1  |  INTRODUC TION

Greenhouse gas emissions have driven global increases in atmo-
spheric and ocean temperatures, which enhance ocean stratifica-
tion. As the ocean surface layer becomes more buoyant, transport of 
highly oxygenated surface waters into the ocean interior is reduced 
(Keeling & Garcia, 2002). Increases in seawater temperature also 
reduce oxygen solubility (Schmidtko et al., 2017). Marked declines 
in dissolved oxygen (DO) concentrations and shoaling of the oxy-
gen minimum zone (OMZ) have been observed globally since 1960 
(Stramma et al., 2008). These anthropogenic processes are super-
imposed on natural multidecadal oscillations (Deutsch et al., 2011; 
Stramma et al., 2019), seasonal patterns (Boyer et al., 1999; Connolly 
et al., 2010) and storm impacts (Van Dolah & Anderson, 1991; Xu 
et al., 2019) on ocean oxygen content.

The ecological impacts of reduced ocean oxygen concentra-
tions include altered microbial processes and metabolic rates, 
changes in predator– prey dynamics and lateral and vertical distri-
bution shifts in marine organisms (Deutsch et al., 2015; Gilly et al., 
2013). Hypoxia disproportionately impacts large taxa, including 
crustaceans, echinoderms and fish, and is associated with de-
creased fecundity, habitat reductions and a loss of diversity (Levin 
et al., 2009; McClatchie et al., 2010; Sato et al., 2018; Stramma 
et al., 2012). Exposure to hypoxic conditions over a short period 
of time can often be tolerated by temporary metabolic reductions 
(i.e. Chew et al., 1990); however exposure over long time periods 
can lead to growth restrictions, increased risk of predation and 
mortality (van den Thillart et al., 1994). The impact of low DO con-
centrations is highly variable between fish species (Davis, 1975; 
Gray et al., 2002). In a broad review of fish response to hypoxia, 
Gray et al., (2002) found that many actively swimming fish exhibit 
growth restrictions at concentrations of 4.2 ml/L and metabolic 
rates decreased at 2.8 ml/L for benthic fish; mortality can occur for 
many species at 1.4 ml/L. The observed and forecasted expansion 
of hypoxic waters have the potential to impact commercial fish-
ing productivity and create regulatory challenges across political 
boundaries (e.g. Cheung et al., 2012).

The upper 3000 m of the Northeast Pacific has lost over 15% 
of its oxygen over the last 60 years, with the OMZ expanding at a 
rate of 3.0 m/year (Ross et al., 2020). Hydrographic data from the 
California Cooperative Oceanic Fisheries Investigations (CalCOFI) 
program demonstrate DO declines and OMZ shoaling beginning in 
the 1980s in the southern California Current System (CCS) (Bograd 
et al., 2008). In this time period, the hypoxic boundary has shoaled 
to depths as shallow as 90 m in parts of Santa Barbara Channel and 
areas off Point Conception (Bograd et al., 2008). This expansion and 
shoaling of the OMZ has the potential to impact fish populations and 
communities through community reorganization and habitat com-
pression. Previous studies provide insight on the effects of low DO 
on fish survival, fitness and distribution in the productive California 
Coastal Current (e.g. Chan et al., 2008; Davis et al., 2018; Flannery, 
2018; Gallo, Hardy, et al., 2020; Keller et al., 2017; McClatchie et al., 
2010).

Laboratory experiments comparing fish behaviour and met-
abolic rates between normal and low DO treatments provide a 
basis to predict fish response to changes in their native habitat. 
For example, juvenile rockfish species (including gopher rockfish, 
Sebastes caratus; copper rockfish, S. caurinus; and black- and- yellow 
rockfish, S. chrysomelas) from central California that were exposed 
to hypoxic conditions (DO concentration of 3.15 ml/L) exhibited 
increased metabolic costs, exploration behaviour and predation 
mortality compared to normoxic controls (Davis et al., 2018). The 
swimming performance of juvenile copper rockfish (Sebastes cauri-
nus) and black rockfish (Sebastes melanops) from northern California 
decreased in hypoxic conditions (DO concentration of 2.8 ml/L and 
1.4 ml/L, Flannery, 2018). In laboratory experiments with juve-
nile rockfish collected from Central California exposed to hypoxic 
conditions, copper rockfish exhibited behavioural changes such as 
reduced escape time, and blue rockfish (Sebastes mystinus) experi-
enced elevated mortality rates (Mattiasen et al., 2020). These stud-
ies indicate that declining DO may lead to distributional shifts in 
California rockfish populations, or cause a decrease in survival and 
fecundity in persistent populations.

Oxygen concentrations have been repeatedly identified as a sig-
nificant predictor in pelagic and demersal fish distribution (Gallo & 
Levin, 2016; Netburn & Koslow, 2015). In a study by Gallo, Beckwith, 
et al., (2020), a remotely operated vehicle (ROV) was used to survey 
benthic fish communities in the Gulf of California at depths ranging 
from 200 m to 1400 m. Oxygen level was the best predictor of fish 
community composition and diversity, and declines in oxygen pre-
dicted by a global climate model are expected to drive a reduction in 
diversity by 2081– 2100 (Gallo, Beckwith, et al., 2020). Observations 
from an autonomous lander at depths from 100– 400 m off the coast 
of San Diego indicate that benthic communities transitioned from fish 
dominated to invertebrate dominated along a declining oxygen gradi-
ent (Gallo, Hardy, et al., 2020). West Coast Groundfish Bottom Trawl 
surveys conducted within a known hypoxic zone off the coast of 
Oregon show significantly lower weight to length ratios in five of six 
groundfish species in low DO regions (<1 ml/L) relative to moderate 
regions (>1 ml/L, Keller et al., 2010). A temporary anoxic event in the 
California Current large marine ecosystem was accompanied by the 
near- complete mortality or abandonment of the anoxic zone by rocky 
reef macroscopic benthic invertebrates and fish (Chan et al., 2008).

Changes have also been detected in fishery productivity between 
normal and low DO environments. US West Coast Groundfish Bottom 
Trawl catch per unit effort was positively associated with DO for 19 
of 34 groundfish species in hypoxic (DO <1.43 ml/L) or severely hy-
poxic (DO <0.5 ml/L) environments (Keller et al., 2017). Total catch 
per unit effort and species richness were also positively associated 
with DO concentrations within hypoxic waters (Keller et al., 2010, 
2015, 2017). Periodic declines in ichthyoplankton abundance in the 
southern California Current corresponding to low oxygen observed 
during CalCOFI surveys from 1951 to 2008 indicate that hypoxia 
may also reduce mesopelagic fish recruitment (Koslow et al., 2011), 
although not for all species (Koslow et al., 2019). During the summer 
months from 1950 to 2007, hypoxic conditions (DO <1.5 ml/L) were 
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detected in 37% of the rockfish habitats in the Cowcod Conservation 
Area (McClatchie et al., 2010). Although hypoxic conditions in this 
conservation area had the potential to slow the recovery of the over-
fished cowcod (Sebastes levis) stock, the population has since recov-
ered steadily and the stock was declared rebuilt by the Pacific Fishery 
Management Council in 2019 (Dick & He, 2019).

While previous experimental and field studies have compared 
fish fitness and distribution between normoxic and hypoxic waters 
off the California coast and throughout the Northeast Pacific, in situ 
changes in fish communities over time in response to declining DO 
have not been examined. In this study, we conducted visual fish tran-
sect surveys on rocky reefs off the California Channel Islands over a 
15- year period. The surveyed reefs fall along a steep bathymetric gra-
dient, making this an ideal site for the observation and quantification 
of species- specific changes in depth distribution over time. Adjacent 
CalCOFI stations characterized the depth- stratified temperature and 
oxygen concentrations impinging on these reefs throughout the time 

series. We hypothesized that depth- dependent declines in DO over 
time would correspond to shoaling of the peak distribution of fish 
species along this reef network. Identifying ongoing and forthcoming 
changes in the distribution and habitat loss of demersal fish is critical 
in guiding the management of associated commercial and recreational 
fisheries and preparing for novel fishery dynamics resulting from hab-
itat compression due to expanding OMZs.

2  |  METHODS

2.1  |  Fish surveys

Fish were surveyed at three natural rocky reefs located between 
Santa Cruz Island and Anacapa Island in the Santa Barbara Channel 
of California (Figure 1, Love et al., 2017). The reefs fall along a steep 
bathymetric gradient along the edge of the Santa Cruz Basin, and 

F I G U R E  1  Maps show the US West Coast (top map), the Santa Barbara Channel and CalCOFI stations (centre map) and the fish survey 
locations at three natural reefs (bottom map). The red box in the US West Coast (top map) indicates the boundaries of the Santa Barbara 
Channel map, and the red box in the Santa Barbara Channel (centre map) indicates the boundaries of the zoomed in map between Santa 
Cruz and Anacapa islands. Red diamonds indicate the locations of CalCOFI line 83.3 station 42, line 86.7 station 45 and line 83.3 station 
51. Circle, triangle and square shapes indicate the jittered locations of individual survey transects (gold circles = Anacapa Passage, green 
triangles = Footprint and blue squares = Piggy Bank). Contour lines are drawn at 50- m depth intervals [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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the surveyed depths span a range of 44– 365 m. Mean depth of 
the surveys conducted in the Anacapa Passage, the shallowest and 
northernmost reef, Footprint, the mid- depth reef, and Piggy Bank, 
the deepest and southernmost reef, were 49, 168 and 298 m respec-
tively. The northern edge of Anacapa Passage and the southern edge 
of Piggy Bank are separated by only 11.2 km, potentially facilitat-
ing movement of fish between the three reefs. Fish surveys were 
conducted between 1995 and 2009. Surveys were not conducted 
in 1996 or 1997, and surveys from 2002 were excluded due to low 
survey effort that year. Surveys occurred during daylight hours in 
the months of September, October and November. Seasonal timing 
of fish surveys are shown in Figure S1. Fish were visually censused 
from the 4.6 m long, two- person Delta research submersible, oper-
ated by Delta Oceanographics of Oxnard, California. Belt transects 
with a 2 m width, 2 m height and median transect length of 397 m 
were conducted at a speed of ~0.5 knots along the seafloor over 
rocky habitats. Observers counted and identified fish to the lowest 
taxonomic category possible, typically species (Figure 2). The total 
length of each individual fish was estimated to the nearest centi-
metre, with assistance from a pair of parallel lasers mounted 20 cm 
apart for visual reference. Surveys were recorded with an externally 
mounted video camera, and footage was reviewed later for accuracy. 

Additional details of the methodology are found in the study by Love 
et al., (2009).

2.2  |  Oceanographic data

Oxygen concentration data were pulled from the California 
Cooperative Oceanic Fisheries Investigations program (CalCOFI) 
hydrographic bottle data set. Seawater measurements are derived 
from discrete bottle sample depths collected on CTD/rosette casts 
during quarterly CalCOFI cruises at 66 stations. While oxygen con-
centrations are primarily derived from bottle samples, concurrent 
CTD sensor measurements may be used for corrections and interpo-
lations. Detailed information about the CalCOFI program and meth-
odologies can be found in CalCOFI cruise data reports (e.g. Scripps 
Institution of Oceanography, 2019). Data were downloaded directly 
through the CalCOFI website (https://calco fi.org/ccdat a/datab ase.
html).

Three CalCOFI hydrographic CTD/rosette stations were iden-
tified near the reefs to represent local changes in oxygen concen-
tration: CalCOFI line 83.3 station 42, line 86.7 station 45 and line 
83.3 station 51 (Figure 1). Estimated bottom depths were as follows 

F I G U R E  2  Photographs of a) squarespot rockfish (Sebastes hopkinsi), b) blue rockfish (Sebastes mystinus) and c) pinkrose rockfish (Sebastes 
simulator) on rocky reefs in the Santa Barbara Channel. Credit: Southwest Fisheries Science Center ROV dive team [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://calcofi.org/ccdata/database.html
https://calcofi.org/ccdata/database.html
https://onlinelibrary.wiley.com/
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for each station: 134 m at line 83.3 station 42, 102 m at line 83.3 sta-
tion 51 and 1644 m at line 86.7 station 45. For this study, oxygen 
concentrations were analysed at discrete 50- m depth intervals rang-
ing from 50 to 300 m. All samples collected within 5 m of a given 
depth interval were analysed. For example, the 50- m depth interval 
used in this analysis consists of samples collected at depths between 
45.0 m and 55.0 m.

2.3  |  Analysis

Changes in oxygen concentration at the three CalCOFI stations 
from 1990 to 2019 were examined using a linear model dependent 
on year and depth. Two additional models were constructed to as-
sess the changes in temperature and salinity at the three CalCOFI 
stations over the same time period. A more complex linear model 
examining change in oxygen concentration over time, including the 
interaction of year and depth category, was also tested. The 50- m 
depth intervals were treated as categorical variables. Only data col-
lected in the months of September, October and November were 
included in the analysis, corresponding to the months that fish sur-
veys were conducted. Seasonal timing of CalCOFI cruises used in 
this study are indicated in Figure S1. An additional model of the rate 
of change in oxygen concentration over time was constructed over 
the restricted time period 1995– 2009 to demonstrate the decline 
observed during the fish sampling period.

To determine the impacts of depth and time on fish abundance, 
fish were first separated by taxon and life- history status. Life history 
was divided into two categories: young of the year (YOY) and non- 
YOY. YOY were defined for each taxon as individuals with a total 
length less than the average length at 1 year, as predicted by the von 
Bertalanffy growth function using taxon- specific growth parame-
ters following Claisse et al. (2014) (Table S1).

Separate models were developed for each unique combination 
of taxon and life history status that was observed during at least 
6 years (half of the study period), and had observation years span-
ning at least a decade. Fish abundance was modelled using Poisson 
regression as follows:

where N is the number of fish within a specific taxon, t, and life- history 
stage, s, counted on a transect; D is the mean depth of the transect; 
Y is the year of the survey; D*Y is the interaction between depth and 
year; and L is the transect length. The depth squared term was added 
so that fish count estimates were not forced to monotonically increase 
or decrease across the large depth range observed in this study. This 
allows the models more flexibility to define the relationship between 
fish abundance and depth, creating a more realistic fit for species 
that may have a peak in distribution in this range. All Poisson models 
were tested for overdispersion using the AER library in R with alpha 
set at α = 0.05 (Kleiber & Zeileis, 2008; R Core Team, 2019). When 

Nt,s ∼ D + D
2 + Y + D ∗ Y + offset (logL)

F I G U R E  3  Oxygen concentrations in September, October and November at CalCOFI line 83.3 station 42, line 86.7 station 45 and line 
83.3 station 51 at depth bins ranging from 50 to 300 m over the period 1990 to 2019. Grey shading indicates the time period when the ROV 
fish surveys took place, from fall 1995 to fall 2009. Sampling depth is denoted by colour. Points indicate oxygen measurements and lines 
represent linear regression predictions of oxygen concentration as a function of year and depth (Table 1); shading around the regression 
lines represents the 95% confidence intervals for each depth category. Mild hypoxia is defined by the black dashed line at 107 μmol O2/kg 
(~2.45 ml/L), and hypoxia is defined by the black solid line at 61 μmol O2/kg (~1.4 ml/L)
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overdispersion was found, a quasi- Poisson model was run in place of a 
Poisson regression.

Model predictions were generated for each survey year across 
the range of depths that a species was observed. The interaction 
between depth and year provides information on whether the mod-
elled fish type is moving deeper or shallower over time. We define 
the annual peak distribution as the depth of maximum predicted fish 
abundance for a given survey year calculated from the model coeffi-
cients. Cases were excluded if a modelled peak in distribution across 
the three reefs did not occur within the taxon's observed depth 
range during any of the years within our time series.

The model- estimated change in the depth of peak distribution 
over time was calculated for each fish type. This depth change is 
defined as the difference between the peak depth distribution of 
the fish type in its first observed year and its final observed year, 
divided by the span of observation years. This method may result in 
an underestimate of the change in peak distribution depth because 
our surveys were limited to depths between 44 m and 365 m. Due 
to this limitation, we were not able to observe or model peaks in fish 
densities that may have moved shallower than 44 m over the 15- year 
observation span.

3  |  RESULTS

The analysis of oxygen concentration data at three CalCOFI stations 
revealed a significant decline in oxygen over the time period 1990– 
2019 (p < 0.001; Figure 3, Table 1). Deeper depths were charac-
terized by lower oxygen concentrations across the range of depths 
included in this study. The results from the linear model examining 
oxygen as a function of year and depth interval indicate that oxygen 
concentration in this region decreased at a rate of 0.53 μmol O2/kg 
per year. This simple model was a better fit than the more complex 
model which included the interaction between year and depth cat-
egory (ΔAIC = 8.75), indicating that the decline in oxygen over time 
was relatively consistent between depth categories. The same linear 

oxygen concentration model was also run during the restricted time 
period 1995– 2009 corresponding to the timing of the fish surveys 
with a significant decline in oxygen at a rate of 0.70 μmol O2/kg per 
year (Table S2). Analogous models assessing changes in temperature 
and salinity at the same CalCOFI stations from 1990 to 2019 found 
no significant temporal trend (Table S3).

There is a wide range of definitions for environmental hypoxia in 
the literature (Hofmann et al., 2011). For the purposes of this study, 
we defined oxygen concentrations in the ocean as mildly hypoxic 
at concentrations below 107 μmol O2/kg seawater (≈2.45 mL O2/L, 
Committee on Environment & Natural Resources, 2010, Hofmann 
et al., 2011) and hypoxic below 61 μmol O2/kg (≈1.4 mL O2/L, 
Hofmann et al., 2011, Middleburg & Levin, 2009). In this study, water 
at the 150- m depth interval, corresponding to surveys conducted 
on Footprint reef, began to fall into the mildly hypoxic category by 
2004 (Figure 3). Oxygen concentrations at depths of 200 m and 
below were mildly hypoxic throughout the time series. Oxygen con-
centrations in the 250- m depth category became hypoxic in 2005. 
Finally, oxygen concentrations at the 300- m depth category, corre-
sponding to the depth of Piggy Bank reef, were consistently hypoxic 
throughout the time series (Figure 3).

There were 60 distinct combinations of fish taxonomic group and 
life stage that met the minimum observation thresholds for inclusion 
in the analysis. A Poisson or quasi- Poisson model was developed 
for each taxon and life stage combination, representing 44 taxo-
nomic groups, and including 16 YOY stages and 44 non- YOY stages 
(Table 2, Table S4). For some taxa, only one of the two life stages 
was observed frequently enough to be included in this analysis. The 
model results for all 60 combinations of taxonomic group and life 
stage are presented in the supplementary materials (Table S4).

Species-  and life stage- specific changes in peak depth distri-
bution of fish over time were examined using the interaction term 
between depth and year in the Poisson and quasi- Poisson models. 
Out of the 60 modelled combinations of fish taxonomic group and 
life stage, 27 of the models had a statistically significant interaction 
between depth and year. In four of these fish types, there was no 
model- estimated peak in depth distribution within the observed 
depth range (Figure 4; Table 2). In the remaining 23 fish types with 
a significant interaction between depth and year, the depth of peak 
fish abundance became shallower over time in 19 of the fish types, 
consisting of 15 non- YOY taxa and four YOY taxa (Figure 4; Table 2). 
The depth of peak fish abundance became deeper over time in only 
four of the fish types, including one YOY taxon (Figure 4).

Among the 23 fish types with a significant change in peak depth 
distribution over time, the average model- estimated change in depth 
was −8.7 m/decade, where the negative sign indicates that the dis-
tributions overall are shifting to shallower habitat. Non- YOY pink-
rose rockfish (Sebastes simulator; Figure 2c) exhibited the largest 
shift into shallower habitat, with a change in peak distribution from 
279 m to 230 m over a 12- year observation period (Figure 5a). Non- 
YOY squarespot rockfish (Sebastes hopkinsi; Figure 2a) exhibited the 
largest estimated shift into deeper habitat, with a change in peak 
distribution from 76 to 95 m over the 15- year observation period 

TA B L E  1  Results of linear regression: Oxygen concentration in 
September, October and November from 1990– 2019 at CalCOFI 
line 83.3 station 42, line 86.7 station 45, and line 83.3 station 51 as 
a function of year as a continuous variable and depth interval (z) as 
a categorical variable. Depth intervals of 50 m spanned the depth 
range from 50 to 300 m

Estimate
Std. 
Error t- value p- value

(Intercept) 1271.74 257.85 4.93 1.20E−06

year −0.53 0.13 −4.15 4.15E−05

z = 100 m −59.21 2.81 −21.09 <2E−16

z = 150 −93.71 4.09 −22.90 <2E−16

z = 200 −124.82 3.66 −34.14 <2E−16

z = 250 −139.77 4.35 −32.12 <2E−16

z = 300 −154.19 4.35 −35.43 <2E−16
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(Figure 5b). Notably, and unlike the other species in this analysis, 
modelled squarespot rockfish peak distributions overlapped with a 
gap in our surveyed depth distribution corresponding to the bathy-
metric slope between the Anacapa Passage and the Footprint reefs 
(Figure 5b).

Many species that are valuable to commercial and recreational 
fisheries exhibited statistically significant changes in peak depth 
distribution. Non- YOY California sheephead (Semicossyphus pulcher), 
one of the most valuable commercial fishery species in the region 
(California FWS, 2020), demonstrated a distribution shift to shal-
lower water of −3.0 m/decade (Figure 5c). Blue rockfish (Sebastes 
mystinus; Figure 2b), one of the most valuable recreational fisher-
ies in the region (RecFIN, 2020), demonstrated a distribution shift 
to shallower water of −5.1 m/decade for non- YOY (Figure 5d) and 
−2.4 m/decade for YOY life stages (Figure 4).

4  |  DISCUSSION

Oceanographic measurements indicate that DO has declined over 
the previous three decades in the shelf waters of the Southern 
California Bight. The rate of DO decline of 0.53 μmol O2/kg per 
year is consistent with trends examined in the California Current 
and Northeast Pacific in previous studies (summarized in Ren et al., 
2018). During the time period 1995– 2009, about one third (19 out of 
60) of the fish types observed on rocky reefs exhibited a significant 
shift in their peak distribution to shallower habitat. Peak distribution 
shifts to shallower habitats are occurring at variable rates, ranging 
from −1.3 m/decade to −44.3 m/decade vertically (Figure 4), de-
pending on the fish species and life stage. A much smaller fraction of 

fish types (4 out of 60) exhibited a significant shift to deeper habi-
tats. As anthropogenic warming and ocean deoxygenation intensify, 
the rapid redistribution of marine species to more suitable habitats 
and the extirpation of populations that are unable to relocate will 
have unprecedented consequences on marine ecosystem structure 
and the provisioning of ecosystem resources (Breitburg et al., 2018; 
Keeling et al., 2009; Levin et al., 2009).

The distributions of fish and invertebrate species, including spe-
cies with high commercial or recreational fishery value, have been 
associated with DO in previous studies (Chan et al., 2008; Gallo, 
Beckwith, et al., 2020; Gallo, Hardy, et al., 2020; Keller et al., 2010, 
2015, 2017). However, it is difficult to disentangle ecosystem re-
sponse to persistent or seasonal low DO due to local bathymetry or 
local- scale oceanographic processes from multidecadal trends in DO 
stemming from either natural climate oscillations or anthropogenic 
climate change when surveys occur only once or sporadically. Our 
results uniquely demonstrate a change in in situ distribution over a 
15- year period concurrent with an environmental decline in oxygen. 
This study leverages a rich data set documenting distribution shifts 
across rocky reefs ranging from 44 to 365 m deep but spanning a 
geographic distance of only ~10 km. The geographic proximity of 
the three reefs limits the effects of other external environmental 
factors. Repeated sampling with consistent methodologies over a 
15- year time period provided the analytical power to observe shoal-
ing in peak reef fish distributions corresponding to climate- driven 
deoxygenation. This underscores the value of long- term continuous 
ecological monitoring programs for understanding the far- reaching 
impacts of anthropogenic and environmental change.

Reef fish at the deepest site, Piggy Bank, and over time at the 
mid- depth site, Footprint, were exposed to DO concentrations below 

F I G U R E  4  Depth change (m/decade) of peak distribution estimated by Poisson or quasi- Poisson models for each fish species and life 
stage. Bar plot shows only species with a significant interaction term between depth and year that have at least one modelled annual peak 
abundance that occurred within the range of depths observed in this study. Negative depth changes indicate fish distributions that are 
occurring shallower through time, and positive depth changes indicate fish distributions that are occurring deeper through time [Colour 
figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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F I G U R E  5  Left panels show the Poisson or quasi- Poisson model estimates (lines) and 95% confidence intervals (polygons) of fish density 
(individuals per 500 m transect) as a function of depth in metres for a given species and life stage. Points indicate observed fish densities. 
Line, polygon and point colours correspond to the year of the observation or input into the model to provide a model estimate. Right 
panels show model- estimated depth of peak fish density as a function of year. Figure a: adult pinkrose rockfish (Sebastes simulator), b: adult 
squarespot rockfish (Sebastes hopkinsi), c: adult sheephead (Semicossyphus pulcher) and d: adult blue rockfish (Sebastes mystinus) [Colour 
figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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levels found to have impacts on metabolism, swimming behaviour 
and predation in laboratory studies of several California rockfish 
species (Davis et al., 2018; Flannery, 2018). The observed shift in 
peak distributions of fishes to shallower depths may be explained by 
emigration to areas with higher DO concentrations, as supported by 
behavioural responses to hypoxia in laboratory settings (Davis et al., 
2018; Flannery, 2018). Given the position of these reefs along the 
steep bathymetric gradient, more oxygen- rich waters at shallower 
depths are easily accessible. There may also be an effect of increased 
predation mortality in hypoxic waters, as demonstrated by increased 
predation on juvenile rockfish by cabezon (Scorpaenichthys marmor-
atus) under hypoxic conditions in the laboratory (Davis et al., 2018).

Most of the fish life stages that demonstrated a significant depth 
shift over time were non- YOYs. Only five YOY species exhibited a 
depth change, with four species shifting shallower in the water col-
umn and one species (halfbanded rockfish, Sebastes semicinctus) 
shifting deeper (Figure 4). YOY fishes at these natural reefs prefer-
entially recruit to shallower habitats, then exhibit an ontological shift 
to deeper habitats (Love et al., 2009; Lowe et al., 2009), whereas 
non- YOY fish density peaks in the 150– 200 m depth range (Love 
et al., 2019). Given the depth ranges that were surveyed, this study 
is well designed to capture changes in depth distribution for non- 
YOY fishes; however, additional surveys in the 0– 50 m range may be 
necessary to assess depth shifts for YOY life stages.

While signals of ocean deoxygenation driven by anthropogenic 
climate change have emerged globally (Stramma et al., 2012; Keeling 
et al., 2010; Helm et al., 2011), natural climate oscillations are su-
perimposed on these trends and can confound mechanistic expla-
nations. The visual surveys in this study coincided with a period of 
anomalously low DO concentrations in the California Current re-
gion (Bograd et al., 2008; McClatchie et al., 2010), likely linked to 
a shallow thermocline characterized by a negative (cool) phase of 
the Pacific Decadal Oscillation (PDO) (Deutsch et al., 2011; Stramma 
et al., 2019). The rapid rates of change in depth distribution esti-
mated for the rocky reef fish species in this study occurred during a 
period of rapid oxygen decline; future decreases in DO driven by an-
thropogenic climate change may be more gradual. Additionally, while 
historical declines in DO provide some foresight into ecosystem re-
sponse to impending anthropogenic climate change, other environ-
mental factors such as nutrient availability will respond differently 
to natural and anthropogenic climate variability. For example, nega-
tive phases of the PDO are linked to colder and more productive en-
vironments (Deutsch et al., 2011; Stramma et al., 2019), although not 
necessarily in the California Current System (Di Lorenzo et al., 2008), 
whereas anthropogenic warming is projected to correspond to a de-
crease in nutrient availability (Behrenfeld et al., 2006; Polovina et al., 
2008). Further study is required to tease apart the relative impacts 
of both natural and anthropogenic climate processes and predict fu-
ture changes in fish distribution.

Fishing regulations and non- linear population dynamics also 
have the potential to cause changes in fish distribution over time. 
The removal of living resources was prohibited starting in 2003 in 
the Footprint State Marine Reserve in response to the Marine Life 

Protection Act of 1999 (California Fish and Game Code Sections 
2850– 2863). This State Marine Reserve overlaps with most of our 
study area, including about half of the surveys in Anacapa Passage 
and all of the Footprint and Piggy Bank survey sites. ROV surveys 
monitoring the first 5 years after the establishment of nearby 
Channel Islands state marine reserves show higher abundances of 
rocky reef fishes inside the no- take reserves relative to paired sites 
outside the reserves (Karpov et al., 2012). Furthermore, fish recruit-
ment, especially in rockfish species, is not consistent over time (e.g. 
Zabel et al., 2011). For example, a known pulse in juvenile rockfish 
recruitment occurred in 1999, and this cohort was followed at natu-
ral reefs and offshore oil and gas platforms until at least 2004 (Love 
et al., 2006; Meyer- Gutbrod et al., 2019). Although this study does 
not critically examine changes in abundance over time, but rather 
changes in peak depth distribution, temporal patterns in cohort size 
stemming from either changes in fishing pressure or high recruit-
ment years may lead to confounding patterns in ontological depth 
preferences. Further analysis examining fish size/age distribution 
and anomalous cohort size over time would shed light on these po-
tential mechanisms of variation in depth distribution.

There were several limitations in this study that may inform the 
planning of future climate change impact research on marine ecosys-
tems. Most importantly, the estimates of changes in vertical distribu-
tion over time will be improved with a longer time series of consistent 
sampling. Climate impacts are best assessed at the multidecadal scale, 
and the 15- year time series presented here is just long enough to pro-
vide a meaningful assessment of inter- annual trends in deep water 
rocky reef ecosystems. Previous work on the impacts of low DO on the 
distribution and diversity of marine organisms has consistently been 
limited by the lack of repeated sampling of the same habitats through 
time. One third of the fish species and life stage combinations tested in 
this study significantly changed in depth distribution over time; how-
ever, shifts in depth distribution may be resolvable for more of the 
study species if surveys are conducted over a longer time period.

In addition to the benefits of a longer time series, future stud-
ies would benefit from an expansion of depth ranges, especially up 
to the shallowest reefs when possible. Some species were excluded 
from the analysis because their model- estimated peak distribution 
occurred outside the surveyed depth range of 44 to 365 m. Surveys 
of a shallower reef in the network would enable the inclusion of 
more species; however, reef networks that span such a large depth 
range are rare.

Water quality measurements were not collected concurrently 
with the visual surveys over the rocky reef system in this study. 
The comparison of fish distribution change with oxygen was en-
abled here by the consistent and long- term sampling of oxygen 
concentration and temperature at three CalCOFI stations nearby; 
however, similar surveys could be improved with the collection of 
in situ oceanographic measurements. Precise DO data collected at 
each transect would be ideal for building mechanistic models of the 
effects of DO on fish population and community dynamics.

Surveys that include in situ oxygen concentration sampling 
would also be useful for identifying fish response to seasonal 
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patterns in DO. While all fish surveys and CalCOFI station sampling 
included in this study occurred within a 64- day seasonal window 
over the 15- year time series (Figure S1), fish survey effort was not 
high enough to parse out potential seasonal variability within that 
survey window. The fall period examined in this study is concurrent 
with a seasonal shift from summertime upwelling- driven hypoxia to 
higher bottom- water DO levels in the winter, although these oscilla-
tions are less pronounced in the southern portion of the California 
Current such as the Santa Barbara Channel (Peterson et al., 2013). 
Most rockfish species, however, have small home ranges and high 
site fidelity with limited seasonal movements (Green et al., 2014, 
Jorgensen et al., 2006, Tolimieri et al., 2009). Although observations 
are limited, known seasonal movements of species such as copper 
and blue rockfishes are small in scale and occur over the summer, 
and therefore are less likely to impact our study (Matthews, 1990).

It is essential to document and predict distribution changes in 
fish species that are actively managed to monitor sustainable fishing 
practices and promote stock recovery. Among the fish species that 
exhibited a statistically significant distribution shift into shallower 
waters, California sheephead and copper rockfish (Sebastes caurinus) 
are both commercially valuable with >60,000 lbs each landed in the 
Santa Barbara Channel region in 2019 (California FWS, 2020). Blue 
rockfish, copper rockfish, rosy rockfish (Sebastes rosaceus) and starry 
rockfish (Sebastes constellatus) are all valuable to recreational fishers, 
with more than 25,000 individual landings documented for each of 
these species in the Santa Barbara Channel region in 2019 (RecFIN, 
2020). The 33 fish species included in the analysis that did not exhibit 
a significant shift in depth distribution over time (Table S4) may be 
less sensitive to changes in oxygen or have developed adaptations to 
improve their fitness in lower oxygen environments. Vertical move-
ments in response to environmental variables may occur slowly for 
some species, and longer sampling time series could be required to 
resolve significant distribution shifts. This study is most appropriate 
for detecting distribution shifts in species that exhibit limited daily 
and seasonal movement; higher resolution detections, perhaps using 
acoustic tags, would be more appropriate for detecting vertical dis-
tribution shifts in more active species.

The identification of hypoxic environments, tracking their spatial 
and temporal dynamics, and predicting the response of fish species 
to this environmental degradation is critical to supporting meaning-
ful fishery management. Oxygen stress will emerge in nearly half 
of the global no- take marine protected areas by 2050 under the 
business- as- usual climate projection RCP8.5 (Bruno et al., 2018). 
Hypoxic conditions may result in the degradation of 55% and com-
plete loss of 18% of the available demersal habitat within the estab-
lished Cowcod Conservation Area in the Northeast Pacific by 2030, 
significantly undermining the benefit of this management initiative 
(McClatchie et al., 2010). Hypoxic conditions cause fish to aggregate 
in high densities in refuge habitats at the boundaries of low oxygen 
regions, which creates opportunities for increased exploitation by 
predators and commercial and recreational fishers (Breitburg et al., 
2018; Eby & Crowder, 2002; McCormick & Levin, 2017; Roman et al., 
2012; Stramma et al., 2012). Shifting distributions of marine fish and 

invertebrates in search of oxygen refugia have the potential to fur-
ther complicate fishery management by increasing the risk of by-
catch (Craig & Bosman, 2013).

Declining oxygen will exceed the range of natural variability in 
most of the global ocean by 2052 (Henson et al., 2017). Climate 
models predict a continued decline of up to 7% in global oceanic DO 
concentrations in the next century (Bopp et al., 2013; Keeling et al., 
2010). Monitoring the formation and severity of these low oxygen 
habitats and the ecosystem response will be a critical component 
to the effective placement of marine protected areas and the reg-
ulation of recreational and commercial fisheries. This study demon-
strates significant changes in the depth distribution of rocky reef 
fish species over a 15- year time period and underscores the need for 
fisheries management that is responsive to variable, and potentially 
unprecedented, environmental conditions.
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